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The space of transport coefficients allowed 
by causality

Michal P. Heller    1  , Alexandre Serantes1,2, Michał Spaliński3,4 & 
Benjamin Withers    5

As an effective theory, relativistic hydrodynamics is fixed by symmetries up 
to a set of transport coefficients. A lot of effort has been devoted to explicit 
calculations of these coefficients. Here we adopt a more general approach, 
deploying bootstrap techniques to rule out theories that are inconsistent 
with microscopic causality. What remains is a universal convex geometry 
in the space of transport coefficients, which we call the hydrohedron. 
The landscape of all consistent theories necessarily lies inside or on the 
edges of the hydrohedron. We analytically construct cross-sections of 
the hydrohedron corresponding to bounds on transport coefficients that 
appear in sound and diffusion modes’ dispersion relations for theories 
without stochastic fluctuations.

Hydrodynamics is a universal description of systems tending towards 
thermal equilibrium. It is formulated as an effective theory, order by 
order in a gradient expansion, which at the classical linearized level 
can be mapped to the expansion of the mode frequencies ω in powers 
of the wave-vector k:

ω(k) =
∞
∑
n=1

cnkn. (1)

Such hydrodynamic Taylor series expansions have been studied in 
a wide variety of examples and have been found to have a finite radius 
of convergence1–6. The complex cn are a collection of transport coef-
ficients that include the speed of sound and the diffusion constant. 
The aim of this paper is to characterize the set of physically accept-
able collections of transport coefficients, which can be thought of 
as the landscape of hydrodynamic theories. We propose to chart its 
boundaries by imposing the causality condition7

vLC |ℑ𝔪𝔪 k| − ℑ𝔪𝔪ω(k) ≥ 0. (2)

where vLC is the lightcone speed (we set vLC = 1 in what follows). This con-
dition arises axiomatically, a consequence of position space retarded 
Green’s functions being tempered distributions and causality dictating 

support only in the appropriate lightcone. This implies that certain 
regions of its Fourier transform are analytic, thus restricting where 
physical modes can appear. In ref. 7, we used equation (2) to prove 
that all dissipative hydrodynamic expansions (equation (1)) have a 
finite radius of convergence R and establish two-sided bounds on all 
dimensionless combinations Rn−1cn.

In the present work, we propose to view equation (2) in a com-
pletely new way. Taking only the minimal ingredients of analyticity 
of the mode functions at k = 0 (equation (1)) and the causality of the 
Green’s function in equation (2), we seek to constrain where the land-
scape of admissible transport coefficients lies. This strategy adheres to 
the bootstrap approach to theoretical physics problems, which carves 
out a space of consistent theories using fundamental principles. It also 
enables us to profit from technologies used in other such programmes 
such as the modern conformal bootstrap8–11 and the S-matrix bootstrap 
(for example, refs. 12–16).

In particular, the two-sided bounds on all Rn−1cn from ref. 7 tell us 
already that the landscape lies inside an infinite-dimensional hyper-
cube. Utilizing the tools surrounding positive moments, detailed in 
ref. 17 (see also refs. 18,19), we cleave away excluded regions from the 
hypercube, so as to characterize more precisely the physically relevant 
region enclosed within. We refer to the region that remains at the end 
of this cleaving process as the hydrohedron. Given the minimal set of 
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rigorous moment problem analysis, we derive a set of hierarchical 
bounds on the dimensionless coefficients R2n−1β2n. These bounds define 
a convex geometry. Full mathematical details of the analysis can found 
in ‘Diffusion cross-section derivation’.

The first few orders in this hierarchy of bounds are given by the 
following expressions

− 16
3π ≤ Rβ2 ≤ 0. (4)

− 64
15π ≤ R3β4 ≤

256 − 15πRβ2 (8 + 3πRβ2)
90π . (5)

−32, 768 + 1, 575π2 (Rβ2 − R3β4)
2 − 240π (13Rβ2 + 14R3β4)

525π (16 + 3πRβ2)

≤ R5β6 ≤

4,096 − 525π2 (Rβ2 + R3β4)
2 − 120π (31Rβ2 + 14R3β4)

175π (8 − 3πRβ2)
.

(6)

Note that only the dimensionless combinations R2n−1β2n appear. 
These bounds are the first three inequalities in an infinite set. Addi-
tional inequalities arising at higher orders can be easily derived using 
the methods outlined in ‘Diffusion cross-section derivation’, and we 
we provide only the first three here for clarity.

Together, these define a convex geometry in the space of dimen-
sionless transport coefficients {R2n−1β2n}. Because we have restricted our 
analysis here to diffusive modes (equation ((3)), this is a cross-section 
of the full hydrohedron geometry (the cross-section corresponding to 
setting all odd-k coefficients to zero and all even-k coefficients to be 
purely imaginary). These first three bounds (equations (4)–(6)) provide 
a projection of the diffusive cross-section of the hydrohedron to the 
first three transport coefficients, {Rβ2, R3β4, R5β6}, a three-dimensional 
(3D) convex shape. This shape is illustrated in Fig. 1a.

All two-dimensional projections involving {Rβ2, R3β4, R5β6} are 
shown in Fig. 1b–d. The projection to the (Rβ2, R3β4)-plane is given by 
the inequalities in equations (4) and (5). The other projection planes 
(Rβ2, R5β6) and (R3β4, R5β6) are given by more complicated expressions 
because they also involve equation (6). For the (Rβ2, R5β6)-plane, we 
have that the closure of the projection exists within the interval 
− 16

3π
≤ Rβ2 ≤ 0, with R5β6 upper bounded by a piecewise function

R5β6 ≤

⎧
⎪⎪
⎨
⎪⎪
⎩

−3, 328
945π − 5

3Rβ2

+πR2β22 +
π2

4
R3β32 if − 16

3π ≤ Rβ2 < − 10
3π

136
35π if − 10

3π ≤ Rβ2 ≤ 0

(7)

and lower bounded by − 144
35π

. For the (R3β4, R5β6)-plane, the closure of 

the projection exists within the interval − 64
15π

≤ R3β4 ≤
56
15π

, with R5β6 
upper bounded by a piecewise function

R5β6 ≤

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

512
175π − 6

5 R
3β4 −

3π
8 R6β24 if − 64

15π ≤ R3β4 < − 8
5π

136
35π if − 8

5π ≤ R3β4 <
26
15π

[
−360 + 7√30(34 + 15πR3β4)

×√56 − 15πR3β4
]

3, 150π if 26
15π ≤ R3β4 ≤

56
15π

(8)

assumptions that went into this process, the resulting geometry is oth-
erwise completely universal, independent of, for example, spacetime 
dimension, state or microscopic theory under consideration.

The hydrohedron has cross-sections of special physical sig-
nificance. We will consider two examples in detail, corresponding 
to diffusive and sound modes. We will refer to them as the diffusion 
cross-section and the sound cross-section, respectively. In the diffusion 
cross-section, coefficients of odd powers of k in equation (1) are set to 
zero, whereas coefficients of even powers are purely imaginary. In the 
sound cross-section, coefficients of odd powers of k in equation (1) are 
purely real, whereas coefficients even powers are purely imaginary.

The natural scale of the problem
With the exception of c1, the transport coefficients appearing in equa-
tion (1) are dimensionful parameters. It is conventional to normalize 
these parameters by thermodynamic quantities, such as appropriate 
powers of temperature. In the special case of the shear-viscosity η 
(which appears in ℑ𝔪𝔪 c2), the dimensionless combination η/s is often 
considered, where s is the entropy density. The Kovtun–Son–Starinets 
(KSS) bound η

s
≥ 1

4π
 (ref. 20) is naturally expressed in this way.

However, in stark contrast, imposing causality (equation (2)) gives 
rise to bounds on transport coefficients normalized by R, the radius of 
convergence of the hydrodynamic series (equation (1)), as our results 
below demonstrate. Roughly speaking, R arises because equation (2) is 
utilized by integrating within a disk centred on k = 0, and the strongest 
constraint is given by the largest disk possible for which the function is still 
analytic: that is, a disk of radius R. The hydrohedron geometry then lives 
in the space spanned by the dimensionless transport coefficients, {Rn−1cn}.

For example, in the case of a shear mode in a conformal theory, 
c2 = −i η

ϵ+P
 with ϵ being the energy density and P the pressure, we find 

bounds on the dimensionless combination Rη/(ϵ + P). Firstly we find 
two-sided bounds on Rη/(ϵ + P) alone, and then we find an infinite set 
of bounds that relate Rη/(ϵ + P) to other dimensionless transport com-
binations, Rn−1cn. Note that we do not bound the combination η/s 
directly; see also the discussion around equation (22).

We stress that R is not a formal or abstract quantity. Given a micro-
scopic theory (or a sufficient number of terms of the hydrodynamic 
gradient expansion), it is computable, and it is also in principle measur-
able in experiment. Indeed, R has already been computed in a variety 
of holographic theories as well as kinetic theory; see ref. 6 for a discus-
sion. For example, for the 𝒩𝒩 = 4 supersymmetric Yang–Mills (SYM) 
theory at finite temperature and chemical potential μ, a holographic 
computation gives R = (ϵ + P)/(2μ√η) for a numerically known range 
of μ (refs. 1,5). In general, the value of R varies across theories or spatial 
dimensions or within a given theory as the temperature or other ther-
modynamic parameters are varied. Additionally, R is a natural quantity 
from an effective field theory point of view; as the radius of convergence 
of equation (1), it marks the precise point at which non-hydrodynamic 
degrees of freedom become important. This is because R is set by branch 
point singularities corresponding to other modes7. In other words, R is 
the natural effective field theory cutoff scale for hydrodynamics. Note 
that the explicit presence of the ultraviolet cutoff in effective field 
theory bounds should not come as a surprise; see for example ref. 21.

The diffusion cross-section
As mentioned earlier, in this paper we will restrict our analysis to two 
cross-sections of the full hydrohedron of particular physical signifi-
cance. We start in this section by specializing to a diffusive mode: that 
is, a dispersion relation of the form

ω(k) = i
∞
∑
n=1

β2nk2n, (3)

where β2n ∈ ℝ and with a finite radius of convergence, R > 0. We extend 
k to lie in the disk of radius R centred on k = 0 in the complex plane, 
where we impose the causality condition in equation (2). Through a 
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and lower bounded by another piecewise function

R5β6 ≥

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

− 144
35π if − 64

15π ≤ R3β4 <
16
15π

−

[
32, 768 + 105πR3β4
×(32 − 15πR3β4)

]

8,400π if 16
15π ≤ R3β4 ≤

128
45π

−

[
360 + 7√30(34 + 15πR3β4)

×√56 − 15πR3β4
]

3, 150π if 128
45π ≤ R3β4 ≤

56
15π

.

(9)

The bounds we outline above, as well as the infinite hierarchy of 
associated bounds described in ‘Diffusion cross-section derivation’, 
are a new set of bounds applying to all theories of relativistic transport 
exhibiting a diffusion mode of the type in equation (3). The exception 

is the upper limit of equation (4), which expresses the well-known 
requirement that the diffusivity D is non-negative, where D ≡ −β2. The 
lower limit of equation (4), for instance, is a new rigorous upper bound 
on diffusion. For any given theory, measuring or computing the D along 
with the physical microscopic scale R, the result necessarily lies inside 
the bound of equation (4) if the theory is causal.

It is of course instructive to consider where known microscopic 
theories live in this diffusion cross-section. To this end, we show the 
values of {Rβ2, R3β4, R5β6} computed for 𝒩𝒩 = 4 SYM theory using holo-
graphic techniques (see also refs. 2,3), conformal kinetic theory in the 
relaxation time approximation and two phenomenological models: 
conformal Müller–Israel–Stewart (MIS) theory22,23, widely adopted in 
the study of ultrarelavistic nuclear collisions, and the recently intro-
duced conformal Bemfica–Disconzi–Noronha–Kovtun (BDNK) 
theory24–27. These are generic points in the interior of the projected 
hydrohedron. The exception is that MIS and BDNK intersect the point 
where β2n = 0, where the diffusive mode is trivial. It would of course be 
interesting to identify non-trivial theories that live at the boundaries 
of the hydrohedron, where theories live in tension with the constraints 
of causality. In ‘Further details on the hydrohedron boundary’,  
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Fig. 1 | Hydrohedron diffusion mode geometry. a, Diffusion mode cross-section 
of the hydrohedron in the (Rβ2, R3β4, R5β6)-hyperplane. b–d, Its projections to the 
(R3β4, R5β6)-plane (b), (Rβ2, R5β6)-plane (c) and (Rβ2, R3β4)-plane (d). Causal 
theories necessarily live inside these shaded regions; choices of transport 
coefficients in the white region are acausal and excluded. The functions 
determining the boundaries of each projection (solid black lines) are detailed 

analytically in the text. The purple crosses represent the location of 𝒩𝒩 = 4 SYM 
in the holographic regime, the red open circles correspond to conformal kinetic 
theory in the relaxation time approximation and the green (blue) lines to 
conformal MIS (conformal BDNK) in the parameter regime where they are causal 
and linearly stable.
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we demonstrate that many of the boundaries (although not all of them) 
are open, excluding the possibilities of theories living there.

The sound cross-section
In this section, we specialize to a mode defined by the following Taylor 
series expansion of the dispersion relation

ω(k) =
∞
∑
n=0

α2n+1k2n+1 + i
∞
∑
n=1

β2nk2n (10)

where α2n+1 and β2n are real. This includes both sound mode excitations 
and also Lorentz boosts of the diffusion modes considered in the pre-
vious section. Note that for sound waves, α1 is equal to the speed of 
sound cs, whereas β2 is related to the sound attenuation length Γs as 

β2 = −Γs
2

. As before, specializing to modes of the form in equation (10) 

will give us a cross-section of the full hydrohedron geometry. Note that 
diffusion is itself a cross-section of sound along the hyperplane defined 
by α2n+1 = 0 for all n.

Through the moment problem analysis outlined in ‘Sound 
cross-section derivation’, we obtain an infinite set of hierarchical 
bounds on the transport coefficients α2n+1, β2n normalized to the con-
vergence radius R. The first three bounds in this set are

|α1| ≤ 1, (11)

− 16
3π + π

2 α
2
1 ≤ Rβ2 ≤ 0, (12)

128 − 9π2 (α1 − Rβ2)
2 − 12π (α1 + 2Rβ2)

9π (−4 + πα1)
≤ R2α3 ≤

128 − 9π2 (α1 + Rβ2)
2 + 12π (α1 − 2Rβ2)

9π (4 + πα1)
.

(13)

The first bound in equation (11) expresses the well-known fact that in 
a causal theory the speed of sound cannot exceed the lightcone speed 
vLC = 1. The remaining two-sided bounds in equations (12) and (13) are 
new. In particular, if the speed of sound is known, the inequality in 
equation (12) provides an upper bound for the sound attenuation length 
Γs in units of the convergence radius. For instance, in a d-dimensional 
conformal field theory, |α1| =

1
√d−1

 and

RΓs ≤
32
3π − π

d − 1
. (14)

Taken together, the bounds in equations (11)–(13) define a projection 
of the sound cross-section of the full hydrohedron geometry to the 3D 
subspace of the first three transport coefficients {α1, Rβ2, R2α3}. This 
projection is a convex shape illustrated in Fig. 2a.

All two-dimensional projections involving pairs of {α1, Rβ2, R2α3} 
are shown in Fig. 2b–d. The projection to the (α1, Rβ2)-plane is given by 
inequalities in equations (11) and (12). As it happened in the diffusion 
case, the projections to the remaining (α1, R2α3) and (Rβ2, R2α3) planes 
involve a higher-level inequality (equation (13)) and therefore have 
more involved explicit expressions. In the (α1, R2α3)-plane, we find that 
the closure of the projection exists within the interval ∣α1∣ ≤ 1, in which 
R2α3 is upper bounded by a piecewise function

R2α3 ≤

⎧
⎪
⎪
⎨
⎪
⎪
⎩

128 + 3α1π (4 − 3πα1)
9π (4 + πα1)

if − 1 ≤ α1 < − 4
3π

4
π if − 4

3π ≤ α1 <
2
π

α1 (3 −
π2

4 α
2
1) if 2

π ≤ α1 ≤ 1

, (15)

and lower bounded by another piecewise function

R2α3 ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

α1 (3 −
π2

4 α
2
1) if − 1 ≤ α1 < − 2

π

− 4
π if − 2

π ≤ α1 <
4
3π

− 128 − 3α1π (4 + 3πα1)
9π (4 − πα1)

if 4
3π ≤ α1 ≤ 1

. (16)

For the (Rβ2, R2α3)-plane, the closure of the projection exists within the 

interval − 16
3π

≤ Rβ2 ≤ 0, where R2α3 is upper bounded by a piecewise 
function

R2α3 ≤

⎧⎪
⎨⎪
⎩

(2 − 3πRβ2)(96 + 18πRβ2)
1
2

18π if − 16
3π ≤ Rβ2 < − 10

3π
4
π if − 10

3π ≤ Rβ2 ≤ 0
,

(17)

and lower bounded by another piecewise function

R2α3 ≥

⎧⎪
⎨⎪
⎩

−(2 − 3πRβ2)(96 + 18πRβ2)
1
2

18π if − 16
3π ≤ Rβ2 < − 10

3π

− 4
π if − 10

3π ≤ Rβ2 ≤ 0
.

(18)

In parallel with diffusion case, in Fig. 2 we also provide the values 
of {α1, Rβ2, R2α3} for 𝒩𝒩 = 4 SYM in the holographic limit, kinetic theory 
in the relaxation time approximation, MIS and BDNK (the last three 

also in the conformal regime). Note that α1 =
1
√3

 in all cases. Again, we 

find that all of these theories lie at generic points inside the hydrohe-
dron projections, the exception being where MIS and BDNK reach  
the boundary at β2n = 0, where the sound mode is that of a perfect 
conformal fluid.

Furthermore, we note that the sound cross-section has a special 
corner point. As we demonstrate in ‘The stiff fluid facets’, when ∣α1∣ = 1, 
all the higher-order transport coefficients vanish and the dispersion 
relation is uniquely determined:

ω(k) = ±k. (19)

This corresponds to the case of a stiff perfect fluid and fluids boosted to 
the speed of light, because equation (19) is a fixed point under boosts. 
The vanishing of the diffusivity for a stiff fluid was also noted recently 
in ref. 28. Note also that, according to our analysis, α1 = ±1 still allows 
for a range of Rβ2 and R2α3 values. It is possible that such points may be 
understood in a limit of a family of dispersion relations where as α1 → ±1, 
one finds R → ∞ and β2, α3 → 0 but with the dimensionless products Rβ2 
and R2α3 finite in this limit.

Finally, there are various other physical theories that live at this 
corner of the hydrohedron, traditionally outside the realm of hydrody-
namics, for which our analysis still applies. These include free massless 
theories and two-dimensional conformal field theories.

Relation to other bounds
We have obtained an infinite class of bounds on transport coefficients. 
In the literature, there are a number of important bounds on transport 
that have appeared before. In this section, we comment on the relation 
to these other bounds.

Perhaps the closest in spirit is that obtained in ref. 29 for a qualita-
tive upper bound on diffusion following from causality considerations

http://www.nature.com/naturephysics
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D ≲ v2τeq, (20)

where v is a speed defining a lightcone for operator growth and τeq is a 
local equilibration time. This bound was obtained using approxima-
tions for the structure of diffusion and gapped modes. This upper 
bound should be compared with the lower bound in equation (4) in 
the present work: that is,

D ≤ 16
3πvLCR

−1 (21)

which can be viewed as a rigorous version of equation (20). Recall 
here that vLC is the lightcone speed. Note that the rigorous version 
demands that equilibration time is replaced by radius of convergence 
through v2τeq → vLCR−1, and the precise coefficient is determined in 
equation (21). As we discuss in ‘The natural scale of the problem’, R 
and τ−1eq are both characterizations of the scale of non-hydrodynamic 
physics, and so it is natural that this replacement appears here.

Another notable bound on transport is the KSS bound20, a conjec-
tured lower bound on viscosity in units of entropy density,

1
4π ≤ η

s . (22)

We know from string theory considerations30 that the value of η/s can 
be lowered below this value, at least perturbatively. We have no direct 
analogue for this bound. The closest counterpart would be the upper 
bound in equation (4), in which we conclude that 0 ≤ DR. This illus-
trates that the KSS bound (or its improved version taking the results of  
ref. 30 into account) does not follow from causality alone, but, if at all, 
from other considerations. This is in line with the speed of light vLC not 
appearing at all in equation (22).

Finally we comment on relations to other Planckian bounds related 
to KSS, as proposed in refs. 31–34. These are again lower bounds on 
diffusion, which involve the butterfly velocity vB and the Lyapunov 
time τL, for instance

v2BτL ≲ D. (23)

Similar comments apply to these bounds; as lower bounds that do not 
appear in our analysis, it seems unlikely that they are a consequence 
of the constraints of causality.
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Fig. 2 | Hydrohedron sound mode geometry. a, Sound mode cross-section of 
the hydrohedron in the (α1, Rβ2, R2α3)-hyperplane. b–d, Its projections to the (Rβ2, 
R2α3)-plane (b), (α1, R2α3)-plane (c) and (α1, Rβ2)-plane (d). Colour coding as in Fig. 
1. The functions determining the boundaries of each projection (solid black lines) 
are detailed analytically in the text. The purple crosses represent the location of 
𝒩𝒩 = 4 SYM in the holographic regime, the red open circles correspond to 

conformal kinetic theory in the relaxation time approximation, and the green 
(blue) lines to conformal MIS (conformal BDNK) in the parameter regime where 
they are causal and linearly stable. Finally, the orange star marks to the special 
corner point corresponding to the stiff perfect fluid. Note that in these examples, 
for every triplet (1/√3,β2,α3), there is a corresponding one (−1/√3,β2, −α3), 
which we do not show explicitly for clarity.
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Discussion
In this Article, we provide a new look at relativistic hydrodynamics, 
focusing on constraining the theory as much as possible based on fun-
damental principles alone. Using microscopic causality, we exclude 
most of transport coefficient space, leaving a convex geometry in which 
all causal theories of hydrodynamics necessarily reside. This geometry 
is uniquely determined from causality alone and thus universal, inde-
pendent of spacetime dimension, state and any microscopic details. 
We provide constraints at all orders in the hydrodynamic expansion 
and present a detailed analysis of the first few orders in the sound and 
diffusion cross-sections of this geometry.

It is important to note that the hydrohedron is a geometry defined 
in the space of transport coefficients in units of the momentum scale R, 
where R is the radius of convergence of the hydrodynamic Taylor series 
in equation (1). This is an intrinsic scale that may be computed or meas-
ured given a specific theory. This may appear an unfamiliar normali-
zation choice, given that the vast majority of previous hydrodynamic 
literature quotes transport coefficients in units such as temperature or 
entropy density. However, the universal hydrohedron geometry arises 
only in units of R. Because in general R is a function of temperature in a 
way that depends on the theory, if one were to convert units, then the 
shape would be different between theories and universality would be 
lost. Indeed, the scale R is the cutoff for the effective theory, marking 
the breakdown of hydrodynamics where other physical degrees of free-
dom are required. It is only natural therefore that the universal hydro-
hedron geometry is apparent when coefficients are normalized by R.

Our analysis did not depend on being in the fluid rest frame. 
Although our diffusion mode analysis specialized to zero background 
fluid velocity, applying a boost v to the dispersion relation in equation 
(3) turns it into the form of a sound mode dispersion relation in equa-
tion (10). Transport coefficients can be converted straightforwardly; 

for the first few orders, α1 → v,β2 → (1 − v2)
3
2 β2,α3 → 2v(1 − v2)2β22 . 

The radius of convergence R does not boost in an easily predictable 
way and requires a microscopic computation in each case. The sound 
mode results then apply.

We saw that some faces of the hydrohedron were excluded, mean-
ing that the set is open there. Examples are the faces that lie at the 
boundary of the regions excluded by the moment problem. This is not 
the case for all faces, however, with the faces α1 = ±1 and β2 = 0 not fol-
lowing from the moment problem. This raises the interesting possibility 
of ‘distinguished’ theories living there, reminiscent of the 3D Ising model 
in the conformal bootstrap9. Indeed, we proved that on the faces α1 = ±1, 
the dispersion relation is uniquely ω(k) = ±k, which is a stiff perfect fluid. 
For the face β2 = 0, we have found examples of theories that live there, 
but none that appear to be uniquely determined by low-order transport 
coefficients (aside from at the intersection with α1 = ±1). A family of 
examples is given by ω(k) = 4(1 + i)β4 (i − 1 +√1 + ik2 − i√1 + k2) for 
−1/(4√2) ≤ β4 ≤ 0. It would be interesting to see if there are other geo-
metrically privileged points corresponding to theories of special 
significance.

Our results use analyticity in two senses. First, the role of equa-
tion (2) is simply to exclude singularities from the analytic domain 
of momentum space Green’s functions, which follow directly from 
the axioms of quantum field theory, as discussed in ref. 7. Second, 
we required ω(k) be analytic at k = 0, see equation (1): that is, the 
classical hydrodynamic expansion. However, more is known about 
the analytic structure of ω(k) from first principles: for instance, it 
cannot contain poles7. Thus, finding a way to incorporate properties 
of the ‘global’ analytic structure of ω(k)—rather than just analyticity at 
k = 0—may result in a more constrained region of transport coefficient 
space. For instance, a recent conjecture for the analytic structure of 
chaotic large N thermal two-point functions35 may have bearing on 
the analytic structure of ω(k). Analogously, it is a conjecture in the 
S-matrix bootstrap programme that the amplitudes are ‘maximally 

analytic’ and this conjecture enables stronger constraints; see for 
example refs. 14,36,37.

This discussion brings us naturally to the problem of including 
and understanding stochastic fluctuations in this language. In this case, 
it is known that ω(k) becomes non-analytic at k = 0; see for example  
ref. 38. These effects arise from nonlinearities treated in perturbation 
theory: for example, correcting ω → ω + g δωstochastic + O(g)2, where g is 
a coupling constant that controls interaction strength. Therefore, as 
long as the perturbative treatment holds, such corrections can only 
become important when the causality inequality in equation (2) is 
saturated, which then imposes that ℑ𝔪𝔪(δωstochastic) ≤ 0. It would also 
be interesting to investigate stochastic effects at the level of the 
Schwinger–Keldysh effective action for hydrodynamics39–43. In this 
context, it seems natural to attempt to lift the techniques presented 
here to the coefficients that appear in this effective action, instead.

Finally, the methods adopted in our paper can be also used to 
chart causal convex geometries for other mode types such as Gold-
stone modes, fast-decaying excitations—such as transient quasinormal 
modes of holographic black holes—and quasiparticles.
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Methods
The moment problem
Diffusion cross-section derivation. A general diffusive mode can be 
written as the Taylor series in equation (3). Inserting equation (3) into 
equation (2) with k = reiθ and taking the r → 0 limit at θ = 0, it immedi-
ately follows7

β2 ≤ 0. (24)

If β2 = 0, then β4 ≤ 0 also, and so on in this fashion.
To obtain additional bounds on transport, we may multiply equa-

tion (2) by any non-negative periodic function of θ, ̃p(θ) and integrate 
around a circle of radius r < R,

∫
2π

0
̃p(θ) ̃μ(θ)dθ ≥ 0, ̃μ(θ) ≡ |ℑ𝔪𝔪 k| − ℑ𝔪𝔪ω(k)

|k| , (25)

or, more conveniently for x = cosθ,

∫
1

−1
p(x)μ(x)dx ≥ 0, μ(x) ≡ 1 −

∞
∑
n=1

r2n−1β2n(1 − x2)
− 1

2 T2n(x), (26)

where Tn(x) are Chebyshev polynomials of the first kind. Given some p(x), 
the left-hand side of equation (26) evaluates to a sum of transport coef-
ficients, revealing a bound. Assembling all such bounds, one can then 
carve out regions of excluded parameter space by considering all r < R.

An analogous construction in the context of scattering amplitudes 
is discussed in ref. 17 utilizing the theory of moments, an efficient route 
to generate optimal bounds, which we adopt here. Because μ(x) = μ( − x), 
we restrict our attention to even functions of x. Then, the condition in 
equation (26) becomes a condition on the matrices of moments of the 
measure μ(x)dx. In particular, at a given N, we construct the following 
Hankel matrices of the moments of this measure17,18:

(Hℓ
N)ij = ai+j+ℓ, i, j = 0,… , ⌊N − ℓ

2 ⌋ , an ≡
1
2 ∫

1

−1
x2nμ(x)dx, (27)

in which i and j are the indices of the Hankel matrix and ℓ is a label of 
such a matrix, and then equation (26) is the condition that the following 
matrices are positive semidefinite:

H0
N ≽ 0, H1

N ≽ 0, H0
N−1 − H

1
N ≽ 0, H1

N−1 − H
2
N ≽ 0. (28)

The moments an are related to β2n (equation (26)) through

an =
1

2n + 1 − 2−(2n+1)π
n
∑
j=1

(
2n

n − j
) r2j−1β2j, (29)

r2n−1β2n =
4

π(1 − 4n2) −
4
π

n
∑
j=0

j
∑
q=0

(−1) j−q (
2n

2j
) (

j

q
)an−j+q, (30)

and thus, given N, the conditions of positive semidefinite Hankel matri-
ces translate into bounds on a subset of transport coefficients. Here 
we consider the constraints arising from the N = 2 and N = 3 moment 
problems and thus construct the projections of the hydrohedron into 
parameter space spanned by the transport coefficients {Rβ2, R3β4, R5β6} 
described earlier.

N = 2 case. In this case, we require positive semidefiniteness of the fol-
lowing matrices for all r < R:

H0
2 =

⎛
⎜
⎜
⎝

1 1
3 − π

8 rβ2

1
3 − π

8 rβ2
1
5 − π

8 rβ2 −
π
32 r

3β4

⎞
⎟
⎟
⎠

,

H1
2 = ( 1

3 − π
8 rβ2

) , H0
1 − H1

2 = ( 2
3 + π

8 rβ2
) ,

H1
1 − H

2
2 = ( 2

15 + π
32 r

3β4 ) .

(31)

These conditions, together with the inequality in equation (24), lead 
to the inequalities in equations (4) and (5).

It is straightforward to demonstrate that the non-excluded region 
defined by inequalities in equations (4) and (5) is not closed. For exam-
ple, at β2 = 0 we have that β4 ≤ 0, and thus a portion of the β2 = 0 bound-
ary indicated in Fig. 1d is excluded. It can be established that the 
quadratic portion of this boundary as well as the line β4 = − 64

15π
 are also 

excluded. At these loci in the (Rβ2, R3β4)-plane, considering the con-
straint in equation (2) at r = R uniquely fixes all higher-order transport 
coefficients. This leads to dispersion relations that feature poles and 
hence violate the causality condition in equation (2) (see ref. 7), thus 
showing that loci where the first inequality in equation (5) is saturated 
do not belong to the hydrohedron. An example of such dispersion 
relation at β4 = −64/15π is

w̃( ̃k) = −2i
π (( ̃k − ̃k

−1
) arctanh ̃k + 1 − 2(1 − 2a1) ̃k

2
+ ̃k

4

1 − ̃k
4 ) (32)

with k = R ̃k,ω = Rw̃ and a1 =
1
3
− π

8
β2 ∈ [1/3, 1] parameterizing the curve 

in the projection plane. Further details may be found in ‘Further details 
on the hydrohedron boundary’.

N = 3 case. H0
3 ≽ 0 and H1

2 − H
2
3 ≽ 0 give no new constraints beyond those 

in equation (5), whereas H0
2 − H

1
3 ≽ 0 and H1

3 ≽ 0 respectively, for all r < R, 
give the additional bounds in equation (6).

We note that when R5β6 saturates any of the inequalities in equation 
(6), both R5β6 and all the higher-order transport coefficients are fixed in 
terms of Rβ2 and R3β4. The resulting dispersion relations are excluded 
due to the presence of poles (‘Further details on the hydrohedron 
boundary’). As a consequence, the loci where equation (6) is saturated 
do not belong to the hydrohedron.

Sound cross-section derivation. The dispersion relation of a sound 
mode has the Taylor series representation in equation (10). The bound 
on the speed of sound in equation (11) is obtained by considering the 
fundamental inequality in equation (2) at θ = π/2 in the r → 0 limit7. As 
happened in the diffusion case, to find the remaining ones, the optimal 
way to proceed is translating the causality condition in equation (2) 
into a moment problem. This time, however, the relevant moment 
problem is a trigonometric one formulated on the circle θ ∈ [0, 2π).  
We work with the following unit-normalized density

μ(θ) ≡ |ℑ𝔪𝔪k| − ℑ𝔪𝔪ω(k)
4|k|

|||k=reiθ
, (33)

and consider the moments

γn ≡ ∫
2π

0
e−inθμ(θ)dθ, n = 0, ±1, ±2,… , (34)

which satisfy γ−n = γ∗n, and read

γ0 = 1, γ2n+1 = i π4 r
2nα2n+1, γ2n = − 1

(4n2 − 1) −
π
4 r

2n−1β2n, n ≥ 0.
(35)

Our focus will be on the following Toeplitz matrices:

(TN)ij ≡ γj−i, i, j = 0, 1,… ,N (36)

The reason is that {γn}
N
n=0 is a sequence of moments if and only if TN is 

positive semidefinite, TN ≽ 0 (ref. 19). We now discuss the conse-
quences of this theorem for the transport coefficients in the N = 1, 2, 3 
cases.

N = 1 case. The Toeplitz matrix is given by
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T1 =
⎛
⎜⎜
⎝

1 i π4 α1

−i π4 α1 1

⎞
⎟⎟
⎠
. (37)

This matrix is positive semidefinite provided that detT1 ≥ 0. This condi-
tion results in the two-sided bound |α1| ≤

4
π

, which is less sharp than 
equation (11) and therefore superseded by it.

N = 2 case. The Toeplitz matrix is given by

T2 =

⎛
⎜
⎜
⎜
⎜
⎝

1 i π4 α1 − 1
3 − π

4 rβ2

−i π4 α1 1 i π4 α1

− 1
3 − π

4 rβ2 −i π4 α1 1

⎞
⎟
⎟
⎟
⎟
⎠

. (38)

Together with equation (4), the requirement that T2 ≽ 0 gives rise to 
the two-sided inequality in equation (12).

In the case where Rβ2 saturates the lower bound in equation (12), 
all the higher-order transport coefficients are also fixed uniquely in 
terms of α1. The associated dispersion relation features poles and is 
therefore excluded. This shows that the curve Rβ2 = − 16

3π
+ π

2
α21 , |α1| ≤ 1 

does not belong to the hydrohedron. We refer the reader to ‘Further 
details on the hydrohedron boundary’ for additional details.

N = 3 case. The positive semidefiniteness of T3 leads to the two-sided 
bound in equation (13).

As happened in the N = 2 case, the loci where any side of the bound 
in equation (13) is saturated are outside the hydrohedron. The reason 
is as before: at these boundaries, R2α3 and all the higher-order trans-
port coefficients are fixed uniquely in terms of α1 and Rβ2, leading to a 
dispersion relation that features poles and is thus in conflict with the 
causality condition in equation (2).

Further details on the hydrohedron boundary
Diffusion. Here we explain why the boundaries of the diffusion 
cross-section of the hydrohedron determined by the moment prob-
lem are open. These boundaries have a different status than the ones 
associated to the condition Rβ2 ≤ 0; in principle, this second kind of 
boundary can contain dispersion relations that uphold equation (2) 
and thus belong to the hydrohedron. The analysis that follows relies 
essentially on standard results in the moment problem literature18,19.

We start by defining the moment cone 𝒮𝒮m+1 as the set of all trun-
cated moment sequences of length m + 1 of all Radon measures in [0, 1] 
(the latter set being denoted as M+([0, 1])): that is,

𝒮𝒮m+1 ≡ {s = (a0,a1,… ,am) ∶ aj = ∫
1

0
x jdμ(x), j = 0,… ,m, μ ∈ M+([0, 1])} ,

(39)

and point out that every non-trivial moment sequence s ∈ 𝒮𝒮m+1 can be 
represented by a measure of the form

μ =
p
∑
j=1
mjδxj , p ≤ m + 1, (40)

with pairwise distinct roots xj ∈ [0, 1], weights mj > 0 for all j, and δxj a 
Dirac measure at the point xj. A central quantity in our analysis is the 
index of this representing measure, ind(μ), defined as

ind (μ) ≡
p
∑
j=1
ϵ(xj), where ϵ(0) = ϵ(1) = 1

and ϵ(x) = 2 for x ∈ (0, 1),
(41)

with ind(s) denoting the minimal index of all representing measures 
of s.

The crucial result is Theorem 10.7 in ref. 19 (Theorem 3.5 in ref. 18). 
Among others, in this theorem the following statements are shown to 
be equivalent:

	(1)	 s ∈ ∂𝒮𝒮m+1
	(2)	 ind(s) ≤ m
	(3)	 The representing measure is unique

From this result, it follows that the moment sequences lying at the 
boundary of the moment cone are of the form

a0 =
p
∑
j=1
mj = 1, an =

p
∑
j=1
mjxnj , n > 0. (42)

From the expression above, the inversion formula in equation (30) 
entails that

w̃( ̃k) = −2i
π

⎛
⎜
⎜
⎝

1 + ( ̃k − 1
̃k
) arctanh ̃k −

p
∑
j=1
mj

2 ̃k
2
(1 − 2xj + ̃k

2
)

(1 + ̃k
2
)
2
− 4xj ̃k

2

⎞
⎟
⎟
⎠

. (43)

These dispersion relations are associated to the boundaries of the 
moment cones and uniquely determined by the relevant set of weights 
mj and roots xj. They feature poles at locations fixed by xj; hence, as 
shown in ref. 7, they do not respect the causality condition in equation 
(2) everywhere in the complex k-plane and thus do not belong to the 
hydrohedron. This shows the main result of this subsection: that the 
boundaries of the diffusion cross-section of hydrohedron determined 
by the moment problem are open. We reiterate that this analysis does 
not apply to the other boundaries, prescribed by the Rβ2 ≤ 0 condition.

With the main result established, we now specialize the general 
discussion above to the cases m = 1, 2, 3 for the interested reader.

m = 1 case. We have that ind(s) = 1, and hence there is a single root 

x1 ∈ {0, 1} and weight m1 = 1. The case x1 = 0 leads to Rβ2 =
8
3π

 and is 

unphysical. We are left with the case where x1 = 1, resulting in a moment 
sequence of the form an≥0 = 1. Upon using equation (30), one finds that 
this boundary point saturates all the lower bounds on c2n put forward 
in ref. 7, when specialized to a purely diffusive mode.

m = 2 case. The new cases have ind(s) = 2 and correspond to

	(i)	 p = 1, m1 = 1 and x1 ≡ x ∈ (0, 1) but otherwise free and
	(ii)	 p = 2, x1 = 0, x2 = 1, m1 = 1 − α and m2 = α with α ∈ (0, 1).

In case (i), the moment sequence takes the form an≥0 = xn. With the help 
of equation (29), one can easily show that this form implies that R3β4 
saturates the upper bound in the first inequality of equation (5), with 
x a parameter labelling points on this boundary.

In case (ii), the moment sequence takes the form a0 = 1, an>0 = α. 
It can be readily checked that the relations above imply that 
R3β4 = − 64

15π
, such that the lower bound in the first inequality of equa-

tion (5) is saturated, with α labelling points on this boundary. The 
choice of weights and roots for case (ii) gives back the dispersion 
relation in equation (32) in ‘Diffusion cross-section derivation’ upon 
usage of equation (43).

We conclude by pointing out that there is a fundamental differ-
ence between the dispersion relations associated to cases (i) and (ii). 
Although both feature poles and hence violate in equation (2) some-
where in the complex k-plane, the region where equation (2) is violated 
includes part of the unit disk for the former but not for the latter. Note 
that this also means the transport coefficients from (i) do not form 
part of the closure of the hydrohedron, whilst transport coefficients 
from (ii) do.
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m = 3 case. The new cases have ind(s) = 3. They are

	(iii)	 p = 2, x1 = 0, x2 = x ∈ (0, 1), m1 = 1 − α, m2 = α with α ∈ (0, 1) and
	(iv)	 p = 2, x1 = x ∈ (0, 1), x2 = 1, m1 = α, m2 = 1 − α with α ∈ (0, 1).

For case (iii), the moment sequence is given by a0 = 1, an>0 = αxn. This 
relation, together with equation (29), implies that R5β6 saturates the 
upper bound given in equation (6). For case (iv), an≥0 = αxn + (1 − α), from 
which it follows that R5β6 saturates the lower bound given in equation 
(6). The dispersion relations associated with cases (iii) and (iv) can be 
readily found using equation (43). Both feature poles and are therefore 
discarded, implying that the boundaries of the hydrohedron set by 
equation (6) are open.

Sound. As discussed in ‘Sound cross-section derivation’, the relevant 
moment problem for the sound geometry is a trigonometric one. In 
this case, the mathematical results necessary for our analysis can be 
found in Chapter 11 of ref. 19.

For the truncated trigonometric moment problem, the moment 
cone 𝒮𝒮m+1 is defined as the set of all moment sequences of length n + 1 
associated to all Radon measures on the unit circle 𝕋𝕋 (the latter set 
being denoted as M+(𝕋𝕋)),

𝒮𝒮m+1 ≡ {s = (γ0, γ1,… , γn) ∶ γj = ∫
𝕋𝕋
z−jdμ(z), μ ∈ M+(𝕋𝕋𝕋} . (44)

A sequence s belonging to the boundary of 𝒮𝒮m+1 has a unique represent-
ing measure supported on at most m points. From this result, it follows 
that if s ∈ ∂𝒮𝒮m+1, then

γn =
p
∑
j=1
mje−inθj , θj ∈ [0, 2π) (45)

and p ≤ m. We now explore the consequences of this assertion for the 
cases m = 2, 3. We do not consider the m = 1 case because it is beyond 
the stiff fluid facets we discuss in ‘The stiff fluid facets’.

m = 2 case. The moment sequence is of the form γn =
1
2
(e−inθ + e−in(π−θ)) . 

This expression implies that Rβ2 saturates the lower bound in equation 
(12). Upon using equations (35) and (1), this moment sequence results 
in the dispersion relation

w̃( ̃k) = −2i
π (( ̃k − ̃k

−1
) arctanh ( ̃k) + 1 − ̃k

4

1 − 2 cos(2θ) ̃k
2
+ ̃k

4 )

−4 sin(θ)
π

̃k(1 + ̃k
2
)

1 − 2 cos(2θ) ̃k
2
+ ̃k

4 ,

(46)

with sin(θ) = − π
4
α1 . This dispersion relation does not belong to the 

hydrohedron: it features poles, and moreover it does not belong to its 
closure, because it also violates equation (2) in the vicinity of k2 = 1 
inside the unit disk.

m = 3 case. The representing measure has three support points. There 
are two candidate moment sequences such that γ2n+1 is purely imaginary 
and γ2n purely real, γ(±)n = α (e−inθ + e−in(π−θ)) + (1 − 2α)e±

inπ
2 . For γ(+)n ,R2α3 

saturates the lower bound in equation (13); for γ(−)n , it saturates the 
upper bound on the same equation. The dispersion relations associated 
with γ(+)n  and γ(−)n  are, respectively,

w̃(+)( ̃k) = −2i
π (( ̃k − ̃k

−1
) arctanh ̃k

+(1 −
̃k
2
)(1 − 2(cos(2θ) − 4α cos (θ)2) ̃k

2
+ ̃k

4
)

(1 + ̃k
2
)(1 − 2 cos(2θ) ̃k

2
+ ̃k

4
)

)

+ 4
π

̃k 1 − 2α

1 + ̃k
2 − 8

π
̃k α sin(θ)(1 + ̃k

2
)

1 − 2 cos(2θ) ̃k
2
+ ̃k

4 ,

(47)

w̃(−)( ̃k) = −2i
π (( ̃k − ̃k

−1
) arctanh ̃k

+(1 −
̃k
2
)(1 − 2(cos(2θ) − 4α cos (θ)2) ̃k

2
+ ̃k

4
)

(1 + ̃k
2
)(1 − 2 cos(2θ) ̃k

2
+ ̃k

4
)

)

− 4
π

̃k 1 − 2α

1 + ̃k
2 − 8

π
̃k α sin(θ)(1 + ̃k

2
)

1 − 2 cos(2θ) ̃k
2
+ ̃k

4 .

(48)

As mentioned earlier, both feature poles and are in conflict with the 
causality condition (2).

The stiff fluid facets
Given the sound mode dispersion relation in equation (10) with luminal 
sound speed α1 = ±1, the causality condition in equation (2) uniquely 
fixes the dispersion relation to be ω(k) = ±k. To prove this, first note that

|ℑ𝔪𝔪 k| − ℑ𝔪𝔪ω(k) = |r sinθ| −
∞
∑
n=0

α2n+1r2n+1 sin ((2n + 1)θ)

−
∞
∑
n=1

β2nr2n cos (2nθ) .
(49)

By equation (2), this must be non-negative for all 0 ≤ r < R and 0 ≤ θ < 2π 
(for r ≥ R, the Taylor series representation is invalid). Taking α1 = 1 and 
restricting to θ ∈ [0, π] gives a cancellation between the first two terms 
in this r expansion:

|ℑ𝔪𝔪 k| − ℑ𝔪𝔪ω(k) = −
∞
∑
n=1

α2n+1r2n+1 sin ((2n + 1)θ) −
∞
∑
n=1

β2nr2n cos (2nθ) .

(50)

Thus the leading term in this expansion is now at order r2. Let us proceed 
by induction. Take all coefficients up to order rm−1 to be zero, with the 
exception of α1, and note that m ≥ 2. If m is even, then the next term in 
the expansion gives the constraint (in the limit r → 0)

−βm/2 cos(mθ) ≥ 0, ∀θ ∈ [0,π] (51)

and hence βm/2 = 0. If instead m is odd, then the next term in the expan-
sion gives the constraint (in the limit r → 0)

−α(m−1)/2 sin(mθ) ≥ 0, ∀θ ∈ [0,π] (52)

and thus, similarly, α(m−1)/2 = 0. Hence all coefficients zero up to order 
rm−1 implies the coefficients at order rm are zero. Finally, we note that the 
base case m = 2 is covered by the above analysis, β2 = 0, which completes 
the proof for α1 = 1. The proof for α1 = −1 proceeds analogously. We note 
the observation that α1 = ±1 ⇒ β2 = 0 was also given in ref. 28.
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